Model averaging for sparse seemingly unrelated regression using Bayesian networks among the errors

نویسندگان

چکیده

Abstract Multivariate Bayesian linear regression (MBLR) is a popular statistical tool with many applications in variety of scientific fields. However, shortcoming potential model over-complexity, as the assumes that all responses depend on same covariates and errors are mutually pairwise correlated. The class seemingly unrelated (SUR) models generalizes MBLR by allowing for response-specific covariate sets. In recent work it has been proposed to employ Gaussian graphical learning sparse SUR (SSUR) conditional independencies among errors. SSUR infers undirected edges errors, Reversible Jump Markov Chain Monte Carlo (RJMCMC) inference algorithm relies approximations marginal likelihoods. this paper, we propose new refined replaces graphs (Gaussian models) directed acyclic networks). Unlike earlier model, our therefore able learn some And derive RJMCMC does not require particular, present an sampling covariance matrices coherent given graph. allows exact averaging across both: sets graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian nonparametric sparse seemingly unrelated regression model (SUR)∗

Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems. To avoid overparametrization and overfitting issues, we propose a hierarchical Dirichlet process prior for ...

متن کامل

Bayesian Geoadditive Seemingly Unrelated Regression

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...

متن کامل

Bayesian Geoadditive Seemingly Unrelated Regression 1

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...

متن کامل

Sparse Seemingly Unrelated Regression Modelling: Applications in Econometrics and Finance

We present a sparse seemingly unrelated regression (SSUR) model to generate substantively relevant structures in the high-dimensional distributions of seemingly unrelated model (SUR) parameters. This SSUR framework includes prior specifications, posterior computations using Markov chain Monte Carlo methods, evaluations of model uncertainty, and model structure searches. Extensions of the SSUR m...

متن کامل

Predicting waste generation using Bayesian model averaging

A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics

سال: 2022

ISSN: ['0943-4062', '1613-9658']

DOI: https://doi.org/10.1007/s00180-022-01258-9